Convergence in Concurrency

Doug Lea
SUNY Oswego

=
o
Q
@)
(@)
Q
=
»n
o
»n
o
Q
Q
(*2)
~N
~N
Q.
+
+
=

Introduction

+ Motivation

¥ Infrastructure and middleware development evolves from ...

+ Make something that works ... to ...
+ Make it faster ... to ...
+ Make it more predictable

+ Encounter issues seen in real-time systems
+ Can we apply lessons learned in one to the other?

+ Outline

¥ Present three problem areas, invite discussions

=
o
Q
@)
(@)
Q
=
»n
o
»n
o
Q
Q
(*2)
~N
~N
Q.
+J
+
=

+ Avoid GC! — Controlling allocation and layout
+ Avoid blocking! — Memory models, async designs
+ Avoid virtualization! — Coping with uncertainty

Concurrent Systems

+ Typical system: many mostly-independent inputs; a
mix of streaming and stateful processing

+ QoS goals similar to RT systems

+ Minimize drops and long latency tails
+ But less willing to trade off throughput and overhead

process

=
o
Q
@)
(@)
Q
=
»n
o
»n
o
Q
Q
(*2)
~N
~N
Q.
+J
+
=

1. Memory Management

+ GC can be ill-suited for stream-like processing:
¥+ Repeat: Allocate — read — process — forget
+ RTSJ Scoped memory
¢+ Overhead, run-time exceptions (vs static assurance)
+ Off-heap memory

¢ Direct-allocated ByteBuffers hold data

+* Emulation of data structures inside byte buffers
+ Manual storage management (pooling etc)

=
o
Q
@)
(@)
Q
=
»n
o
»n
o
Q
Q
(*2)
~N
~N
Q.
+J
+
=

+ Manual synchronization control

+ Manual marshalling/lunmarshalling/layout
+ Project Panama will enable declarative layout control
+ Alternatives?

Memory Placement

+ Memory contention, false-sharing, NUMA, etc can
have huge impact

+ Reduce parallel progress to memory system rates

+ JDK8 @sun.misc.Contended allows pointwise manual tweaks
+ Some GC mechanics worsen impact; esp card marks

+ When writing a reference, JVM also writes a bit/byte in a table
indicating that one or more objects in its address range (often
512bytes wide) may need GC scanning

+ The card table can become highly contended
+ Yang et al (ISMM 2012) report 378X slowdown

+ JVMs cannot allow precise object placement control

=
o
Q
@)
(@)
Q
=
»n
o
»n
o
Q
Q
(*2)
~N
~N
Q.
+J
+
=

<+ But can support custom layouts of plain bits (struct-like)

+ JEP for Value-types (Valhalla) + Panama address most cases?
+ JVMs oblivious to higher-level locality constraints
+ Including “ThreadLocal”!

2. Blocking

+ The cause of many high-variance slowdowns
+ More cores —» more slowdowns and more variance

+ Blocking Garbage Collection accentuates impact
+ Reducing blocking

+ Help perform prerequisite action rather than waiting for it
+ Use finer-grained sync to decrease likelihood of blocking

+ Use finer-grained actions, transforming ...
From: Block existing actions until they can continue
To: Trigger new actions when they are enabled

+ Seen at instruction, data structure, task, 10 levels

=
o
Q
@)
(@)
Q
=
»n
o
»n
o
Q
Q
(*2)
~N
~N
Q.
+J
+
=

+ Lead to new JVM, language, library challenges
+ Memory models, non-blocking algorithms, 10 APIs

Hardware Trends

Opportunistically parallelize anything and everything
+ More gates — More parallel computation

=
i4 < Dedicated functional units, multicores
@) - - -
% ¥ More async communication — More variance
=
3 @+ Out-of-order instructions, memory, & 10
i”z Socket 1 Socket 2
§ ALU(S) ALU(S) ALU(S) ALU(S) One view of a
; INsn tor insn tor Insn tor insn common server
2 sched. buf sched. buf sched. buf sched.
: } } } }
éache(s) | Cache(s)
AY AY
Memory
AY

Other devices / hosts

Parallelizing Expressions

Trigger when
e=(a+h)*(c+d Ay

t=a+b u=c+d

=]
Q
o
Q
=
n
o
n
o

o[

+ Exploits available ALU-level parallelism

+ Indistinguishable from sequential evaluation in
single-threaded user programs

Parallel Evaluation inside CPUs

+ Overcome problem that instructions are in sequential
stream, not parallel dag

+ Dependency-based execution

#+ Fetch instructions as far ahead as possible

Q
=
n
o
n
o

+ Complete instructions when inputs are ready (from memory
reads or ops) and outputs are available

o[

+ Use a hardware-based simplification of dataflow analysis
+ Doesn't always apply to multithreaded code

+ Dependency analysis is shallow, local

+ What if another processor modifies a variable accessed in
an instruction?

+ What if a write to a variable serves to release a lock?

Shallow Dependencies

» Assumes current core pysting it together
owns Inputs & outputs gandy Brldge Microarchitecture

+ Not always true in
concurrent programs

0.edu

Q
=
n
o
n
o

#+ Special instructions
(fences etc) are needed to

o[

constraints . Wﬁ T
Sl o VShfle fyxjFp Bodl |5
AvX FP ADY
AVX ¥ Bleng

Memur',r Control

+ The main reason we need e
Memory Models 12 Data Cache (MLC) |
32k L1 Data Cache .ID

24 Sandy Bridge - Intel® Next Generation Microarchitecture AVX= Intel@ Advanced Vector Extensions (Intel@ Avy) INTEL DEVELOPER FORUM

Hardware view of Memory Models

+ Programmers must explicitly disable unordered
Instruction executions not already covered by as-if-
locally-sequential rules

Stronger processors (sparc, x86) partially automate by
suppressing most violations possibly visible across threads
(TSO: all except visible Store — Load reordering)

+ Weaker processors (ARM, POWER) do not
+ Compilers also reorder to reduce stalls (plus other reasons)

+ Processors support fences and/or special riw
Instructions or modes that disable reorderings

=
o
Q
@)
(@)
Q
=
»n
o
»n
o
Q
Q
(*2)
~N
~N
Q.
+J
+
=

+ Details & performance annoyingly differ across processors

+ Among hardest and messiest parts of formal memory
models is characterizing effects of not using them

+ Many weird cases; e.g., happens-before cycles

Main JSR-133 Memory Rules

+ Java (also C++, C) Memory Model for locks

+ Sequentially Consistent (SC) for data-race-free programs
+ A requirement for implementations of locks and synchronizers

+ Java volatiles (and default C++ atomics) also SC
+ Load has same ordering rules as lock; store same as unlock
+ Interactions with plain non-volatile accesses

% Prevent, e.g., accesses in lock bodies from moving out
+ First approximation of reordering rules:
1st/2nd Plain load Plain store Volatile load Volatile store
Plain load NO
Plain store NO NO
Volatile load NO NO NO NO
Volatile store NO NO NO

=
o
Q
@)
(@)
Q
=
»n
o
»n
o
Q
Q
(*2)
~N
~N
Q.
+J
+
=

Enhanced Volatiles (and Atomics)

+ Support extended atomic access primitives
+ CompareAndSet (CAS), getAndSet, getAndAdd, ...
+ Provide intermediate ordering control

+ May significantly improve performance

+ Reducing fences also narrows CAS windows, reducing retries
+ Useful in some common constructions

+ Publish (release) — acquire

+ No need for StoreLoad fence if only owner may modify
+ Create (once) — use

+ No need for LoadLoad fence on use because of intrinsic
dependency when dereferencing a fresh pointer

+ Interactions with plain access can be surprising

=
o
Q
@)
(@)
Q
=
»n
o
»n
o
Q
Q
(*2)
~N
~N
Q.
+J
+
=

+ Most usage is idiomatic, limited to known patterns
+ Resulting program need not be sequentially consistent

Expressing Atomics

+ C++/C11: standardized access methods and modes
+ Java: JVM “internal” intrinsics and wrappers

<+ Not specified in JSR-133 memory model, even though some
were introduced internally in same release (JDKS5)

@ Ideally, a bytecode for each mode of (load, store, CAS)
+ Would fit with No L-values (addresses) Java rules
+ Instead, intrinsics take object + field offset arguments
+ Establish on class initialization, then use in Unsafe API calls

+ Non-public; truly “unsafe” since offset args can't be checked

+ Can be used outside of JDK using odd hacks if no security mgr
+ j.u.c supplies public wrappers that interpose (slow) checks

+ JEP 188 and 193 (targeting JDK9) will provide first-
class specs, and improved APIs

@+ Should be equally useful in RTSJ

=
o
Q
@)
(@)
Q
=
»n
o
»n
o
Q
Q
(*2)
~N
~N
Q.
+J
+
=

Example: Transferring Tasks

+ Work-stealing Queues perform ownership transfer

+ Push: make task available for stealing or popping

§ + Needs release fence (weaker, thus faster than full volatile)

s @ Pop, steal: make task unavailable to others, then run

Q . .

= + Needs CAS with at least acquire-mode

o

»

°

Q

<)

o

N

>

o T2: steal() --

o T1: push(w) -- W :zéi ¢

< wstate =17; . Queue slof_ if (CAS(slot, w, null))
S|0t/r a; s = w.state; ...

consume
Require: s == 17

publish
Store-release
(putOrdered)

Task w
Int state;

Example: ConcurrentLinkedQueue

+ Extend Michael & Scott Queue (PODC 1996)

+ CASes on different vars (head, tail) for put vs poll

@ If CAS of tail from t to x on put fails, others try to help
+ By checking consistency during put or take
+ Restart at head on seeing self-link

2: CAS tall
from t to x

1: CAS head Put X head tail
from hton

=
o
Q
@)
(@)
Q
=
»n
o
»n
o
Q
Q
(*2)
~N
~N
Q.
+J
+
=

. P
= @000

G-
from null to x

2: self-link h (relaxed store) |

Efficient Ordering Control

+ Orderings inhibit common compiler optimizations

Inhibiting wrong ones may also inhibit those you want
@ A byproduct of coarse-grained JMM modes/rules

¥+ Can overcome with manual dataflow-like tweaks

¢ Hoisting reads, exception & indexing checks, etc
+ Manual inlining to avoid call opaqueness effects
<+ Resort to unsafe intrinsics to bypass redundant checks

+ Efficient concurrent Java code looks a lot like
efficient concurrent C11 code

=
o
Q
@)
(@)
Q
=
»n
o
»n
o
Q
Q
(*2)
~N
~N
Q.
+J
+
=

+ Encapsulate in libraries whenever possible

1O

+ Long-standing designh and API tradeoff:

Blocking: suspend current thread awaiting 10 (or sync)
+ Completions: Arrange 10 and a completion (callback) action

+ Neither always best in practice

+ Blocking often preferable on uniprocessors if OS/VM must
reschedule anyway

+ Completions can be dynamically composed and executed

+ But require overhead to represent actions (not just stack-frame)

+ And internal policies and management to run async
completions on threads. (How many OS threads? Etc)

+ Some components only work in one mode

+ Ideally support both when applicable

=
o
Q
@)
(@)
Q
=
»n
o
»n
o
Q
Q
(*2)
~N
~N
Q.
+J
+
=

+ Completion-based support problematic in pre-JDK8 Java
+ Unstructured APIs lead to “callback hell”

Blocking vs Completions In Futures

+ Java.util.concurrent Futures hit similar tradeoffs

+ Completion support hindered by expressibility

+ Initially skirted “callback hell” by not supporting any callbacks.
But led to incompatible 3" party frameworks

+ JDKS8 lambdas and functional interfaces enabled
Introduction of CompletableFutures (CF)

+ CF supports fluent dynamic composition
CompletableFuture.supplyAsync(()->generateStuff()).
thenApply(stuff->reduce(stuff)).thenApplyAsync(x->f(x)).
thenAccept(result->print(result)); // add .join() to wait

=
o
Q
@)
(@)
Q
=
»n
o
»n
o
Q
Q
(*2)
~N
~N
Q.
+J
+
=

+ Plus methods for ANDed, ORed, and flattened combinations

+ In principle, CF alone suffices to write any concurrent program
< Not fully integrated with JDK 10 and synchronization APIs

+ Adaptors usually easy to write but hard to standardize
+ Tools/languages could translate into CFs (as in C# async/await)

3. Layered, Virtualized Systems

Lines of source code make many transitions on their
way down layers, each imposing unrelated-looking ...

@ policies, heuristics, bookkeeping
... on that layer's representation of ...

single instructions, sequences, flow graphs, threads
+ variables, objects, aggregates

Core Libraries Each may be

internal layered
Hardware

+ Poor predictability of the effects of any line of code

=
o
Q
@)
(@)
Q
=
»n
o
»n
o
Q
Q
(*2)
~N
~N
Q.
+J
+
=

+ Need to know what to look for to cope with anomalies
+ (More details in SPAA 2012 and Philly ETE 2013 talks)

Some Sources of Anomalies

¢ Fast-path / slow-path

+ “Common” cases fast, others slow
+ Ex: Caches, hash-based, exceptions, net protocols
¢+ Anomalies: How common? How slow?
¢ Hot / cold
+ Ex: power management, thread-core mappings, JITs
+ Anomalies: slow thread startup, uneven throughput
+ Lowering representations

+ Translation loses higher-level constraints

=
o
Q
@)
(@)
Q
=
»n
o
»n
o
Q
Q
(*2)
~N
~N
Q.
+J
+
=

+ Ex: Task dependencies, object invariants, pre/post conds

+ Anomalies: Dumb machine code, unnecessary checks, traps
+ Code between the lines

+ Insert support for lower-layer into code stream

+ Ex: VMM code rewrite, GC safepoints, profiling, loading
+ Anomalies: Unanticipated interactions with user code

Randomization

+ Common components inject algorithmic randomness

#+ Hashing, skip lists, crypto, nhumerics, etc
+ Fun fact: The Mark | (1949) had hw random number generator
@ Visible effects; e.g., on collection traversal order

+ API specs do not promise deterministic traversal order
+ Bugs when users don't accommodate

+ Can be even more useful in concurrency

+ Fight async and system non-determinism with algorithmic
non-determinism

=
o
Q
@)
(@)
Q
=
»n
o
»n
o
Q
Q
(*2)
~N
~N
Q.
+J
+
=

+ Hashed striping, backoffs, work-stealing, etc
< Implicit hope that central limit theorem applies
+ Combining many allegedly random effects — lower variance

+ Often appears to work, but almost never provably
+ Formal intractability is an impediment for some real-time use

Summary

+ Full performance determinism is a lost cause on
general-purpose platforms

+ Cannot reliably predict properties of fully implemented
component using a given design [algorithm

+ Hard-real-time increasingly isolated to custom hardware
+ But unpredictability can often be reduced in practice

+ Also usually improving throughput
@ Using ideas from both real-time and non-real-time

=
o
Q
@)
(@)
Q
=
»n
o
»n
o
Q
Q
(*2)
~N
~N
Q.
+J
+
=

< Need to lift more design and programming techniques from
black-art to everyday constructions

Backup slides

+ Backup slides follow

=
o
Q
@)
(@)
Q
=
»n
o
»n
o
Q
Q
(*2)
~N
~N
Q.
+J
+
=

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24

