
Convergence in Concurrency

Doug Lea
SUNY Oswego

Introduction

Motivation

Infrastructure and middleware development evolves from ...

Make something that works … to ...

Make it faster … to ...

Make it more predictable

Encounter issues seen in real-time systems

Can we apply lessons learned in one to the other?

Outline

Present three problem areas, invite discussions

Avoid GC! – Controlling allocation and layout

Avoid blocking! – Memory models, async designs

Avoid virtualization! – Coping with uncertainty

Concurrent Systems

Typical system: many mostly-independent inputs; a
mix of streaming and stateful processing

QoS goals similar to RT systems

Minimize drops and long latency tails

But less willing to trade off throughput and overhead

decode

shared
state

......

process

combine

data parallel

...

...

...

1. Memory Management

GC can be ill-suited for stream-like processing:

Repeat: Allocate → read → process → forget

RTSJ Scoped memory

Overhead, run-time exceptions (vs static assurance)

Off-heap memory

Direct-allocated ByteBuffers hold data

Emulation of data structures inside byte buffers

Manual storage management (pooling etc)

Manual synchronization control

Manual marshalling/unmarshalling/layout

Project Panama will enable declarative layout control

Alternatives?

Memory Placement

Memory contention, false-sharing, NUMA, etc can
have huge impact

Reduce parallel progress to memory system rates

JDK8 @sun.misc.Contended allows pointwise manual tweaks

Some GC mechanics worsen impact; esp card marks

When writing a reference, JVM also writes a bit/byte in a table
indicating that one or more objects in its address range (often
512bytes wide) may need GC scanning

The card table can become highly contended

Yang et al (ISMM 2012) report 378X slowdown

JVMs cannot allow precise object placement control

But can support custom layouts of plain bits (struct-like)

JEP for Value-types (Valhalla) + Panama address most cases?

JVMs oblivious to higher-level locality constraints

Including “ThreadLocal”!

2. Blocking

The cause of many high-variance slowdowns

More cores → more slowdowns and more variance

Blocking Garbage Collection accentuates impact

Reducing blocking

Help perform prerequisite action rather than waiting for it

Use finer-grained sync to decrease likelihood of blocking

Use finer-grained actions, transforming ...
From: Block existing actions until they can continue
To: Trigger new actions when they are enabled

Seen at instruction, data structure, task, IO levels

Lead to new JVM, language, library challenges

Memory models, non-blocking algorithms, IO APIs

Hardware Trends

ALU(s)

insn
sched store

buf

ALU(s)

insn
sched store

buf

Cache(s)

Memory

Socket 1

ALU(s)

insn
sched store

buf

ALU(s)

insn
sched store

buf

Cache(s)

Socket 2

Other devices / hosts

Opportunistically parallelize anything and everything

More gates → More parallel computation

Dedicated functional units, multicores

More async communication → More variance

Out-of-order instructions, memory, & IO

One view of a
common server

Parallelizing Expressions

t = a + b u = c + d

e = t * u

e = (a + b) * (c + d)
Trigger when

ready

Exploits available ALU-level parallelism

Indistinguishable from sequential evaluation in
single-threaded user programs

Parallel Evaluation inside CPUs

Overcome problem that instructions are in sequential
stream, not parallel dag

Dependency-based execution

Fetch instructions as far ahead as possible

Complete instructions when inputs are ready (from memory
reads or ops) and outputs are available

Use a hardware-based simplification of dataflow analysis

Doesn't always apply to multithreaded code

Dependency analysis is shallow, local

What if another processor modifies a variable accessed in
an instruction?

What if a write to a variable serves to release a lock?

Shallow Dependencies

Assumes current core
owns inputs & outputs

Not always true in
concurrent programs

Special instructions
(fences etc) are needed to
enforce non-local ordering
constraints

The main reason we need
Memory Models

Ars Technica

Hardware view of Memory Models

Programmers must explicitly disable unordered
instruction executions not already covered by as-if-
locally-sequential rules

Stronger processors (sparc, x86) partially automate by
suppressing most violations possibly visible across threads
(TSO: all except visible Store → Load reordering)

Weaker processors (ARM, POWER) do not

Compilers also reorder to reduce stalls (plus other reasons)

Processors support fences and/or special r/w
instructions or modes that disable reorderings

Details & performance annoyingly differ across processors

Among hardest and messiest parts of formal memory
models is characterizing effects of not using them

Many weird cases; e.g., happens-before cycles

Main JSR-133 Memory Rules

Java (also C++, C) Memory Model for locks

Sequentially Consistent (SC) for data-race-free programs

A requirement for implementations of locks and synchronizers

Java volatiles (and default C++ atomics) also SC

Load has same ordering rules as lock; store same as unlock

Interactions with plain non-volatile accesses

Prevent, e.g., accesses in lock bodies from moving out

First approximation of reordering rules:
1st/2nd Plain load Plain store Volatile load Volatile store

Plain load NO

Plain store NO NO

Volatile load NO NO NO NO

Volatile store NO NO NO

Enhanced Volatiles (and Atomics)

Support extended atomic access primitives

CompareAndSet (CAS), getAndSet, getAndAdd, ...

Provide intermediate ordering control

May significantly improve performance

Reducing fences also narrows CAS windows, reducing retries

Useful in some common constructions

Publish (release) → acquire

No need for StoreLoad fence if only owner may modify

Create (once) → use

No need for LoadLoad fence on use because of intrinsic
dependency when dereferencing a fresh pointer

Interactions with plain access can be surprising

Most usage is idiomatic, limited to known patterns

Resulting program need not be sequentially consistent

Expressing Atomics

C++/C11: standardized access methods and modes

Java: JVM “internal” intrinsics and wrappers

Not specified in JSR-133 memory model, even though some
were introduced internally in same release (JDK5)

Ideally, a bytecode for each mode of (load, store, CAS)

Would fit with No L-values (addresses) Java rules

Instead, intrinsics take object + field offset arguments

Establish on class initialization, then use in Unsafe API calls

Non-public; truly “unsafe” since offset args can't be checked

Can be used outside of JDK using odd hacks if no security mgr

j.u.c supplies public wrappers that interpose (slow) checks

JEP 188 and 193 (targeting JDK9) will provide first-
class specs, and improved APIs

Should be equally useful in RTSJ

Example: Transferring Tasks

Work-stealing Queues perform ownership transfer

Push: make task available for stealing or popping

Needs release fence (weaker, thus faster than full volatile)

Pop, steal: make task unavailable to others, then run

Needs CAS with at least acquire-mode

T1: push(w) --
w.state = 17;
slot = q;

T2: steal() --
w = slot;
if (CAS(slot, w, null))
 s = w.state; ...

Task w
Int state;

consumepublish
Require: s == 17

Queue slot

Store-release
(putOrdered)

Example: ConcurrentLinkedQueue

Extend Michael & Scott Queue (PODC 1996)

CASes on different vars (head, tail) for put vs poll

If CAS of tail from t to x on put fails, others try to help

By checking consistency during put or take

Restart at head on seeing self-link

Poll head tail

h n

Put x head tail

t

1: CAS head
 from h to n

x

1: CAS t.next
from null to x

2: CAS tail
from t to x

2: self-link h (relaxed store)

Efficient Ordering Control

Orderings inhibit common compiler optimizations

Inhibiting wrong ones may also inhibit those you want

A byproduct of coarse-grained JMM modes/rules

Can overcome with manual dataflow-like tweaks

Hoisting reads, exception & indexing checks, etc

Manual inlining to avoid call opaqueness effects

Resort to unsafe intrinsics to bypass redundant checks

Efficient concurrent Java code looks a lot like
efficient concurrent C11 code

Encapsulate in libraries whenever possible

IO

Long-standing design and API tradeoff:

Blocking: suspend current thread awaiting IO (or sync)

Completions: Arrange IO and a completion (callback) action

Neither always best in practice

Blocking often preferable on uniprocessors if OS/VM must
reschedule anyway

Completions can be dynamically composed and executed

But require overhead to represent actions (not just stack-frame)

And internal policies and management to run async
completions on threads. (How many OS threads? Etc)

Some components only work in one mode

Ideally support both when applicable

Completion-based support problematic in pre-JDK8 Java

Unstructured APIs lead to “callback hell”

Blocking vs Completions in Futures

Java.util.concurrent Futures hit similar tradeoffs

Completion support hindered by expressibility

Initially skirted “callback hell” by not supporting any callbacks.
But led to incompatible 3rd party frameworks

JDK8 lambdas and functional interfaces enabled
introduction of CompletableFutures (CF)

CF supports fluent dynamic composition
CompletableFuture.supplyAsync(()->generateStuff()).
 thenApply(stuff->reduce(stuff)).thenApplyAsync(x->f(x)).
 thenAccept(result->print(result)); // add .join() to wait

Plus methods for ANDed, ORed, and flattened combinations

 In principle, CF alone suffices to write any concurrent program

Not fully integrated with JDK IO and synchronization APIs

Adaptors usually easy to write but hard to standardize

Tools/languages could translate into CFs (as in C# async/await)

3. Layered, Virtualized Systems

Lines of source code make many transitions on their
way down layers, each imposing unrelated-looking …

policies, heuristics, bookkeeping

 … on that layer's representation of ...

single instructions, sequences, flow graphs, threads

variables, objects, aggregates

Poor predictability of the effects of any line of code

Need to know what to look for to cope with anomalies

(More details in SPAA 2012 and Philly ETE 2013 talks)

Hardware

OS / VMM

JVM

Core Libraries

...

Each may be
internal layered

Some Sources of Anomalies

Fast-path / slow-path

“Common” cases fast, others slow

Ex: Caches, hash-based, exceptions, net protocols

Anomalies: How common? How slow?

Hot / cold

Ex: power management, thread-core mappings, JITs

Anomalies: slow thread startup, uneven throughput

Lowering representations

Translation loses higher-level constraints

Ex: Task dependencies, object invariants, pre/post conds

Anomalies: Dumb machine code, unnecessary checks, traps

Code between the lines

Insert support for lower-layer into code stream

Ex: VMM code rewrite, GC safepoints, profiling, loading

Anomalies: Unanticipated interactions with user code

Randomization

Common components inject algorithmic randomness

Hashing, skip lists, crypto, numerics, etc

Fun fact: The Mark I (1949) had hw random number generator

Visible effects; e.g., on collection traversal order

API specs do not promise deterministic traversal order

Bugs when users don't accommodate

Can be even more useful in concurrency

Fight async and system non-determinism with algorithmic
non-determinism

Hashed striping, backoffs, work-stealing, etc

Implicit hope that central limit theorem applies

Combining many allegedly random effects → lower variance

Often appears to work, but almost never provably

Formal intractability is an impediment for some real-time use

Summary

Full performance determinism is a lost cause on
general-purpose platforms

Cannot reliably predict properties of fully implemented
component using a given design / algorithm

Hard-real-time increasingly isolated to custom hardware

But unpredictability can often be reduced in practice

Also usually improving throughput

Using ideas from both real-time and non-real-time

Need to lift more design and programming techniques from
black-art to everyday constructions

Backup slides

Backup slides follow

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24

